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Mode-coupling theory for heteropolymers
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We study the Langevin dynamics of a heteropolymer by means of a mode-coupling approximation scheme,
giving rise to a set of coupled integro-differential equations relating the response and correlation functions. The
analysis shows that there is a regime at low temperature characterized by out-of-equilibrium dynamics, with
violation of time-translational invariance and of the fluctuation-dissipation theorem. The onset of aging dy-
namics at low temperatures gives insight into the nature of the slow dynamics of a disordered polymer. We also
introduce a renormalization-group treatment of our mode-coupling equations, which supports our analysis, and
might be applicable to other systems.
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I. INTRODUCTION

The dynamics of a heteropolymer chain is relevant for
problem of protein folding and also from a fundamen
point of view. Since a protein is composed of monomers
different chemical natures, it is important to understand
effect of heterogeneity on the kinetics of a polymer cha
Such results might give insight into the possible foldi
pathways of proteins or longer chains. Although the infl
ence of quenched or annealed disorder on the thermodyn
ics of polymers is a largely investigated area of study@1#,
together with the effect of random fields@2#, random charges
along the chain~polyelectrolytes and polyampholytes! @3#, in
solution or at the interface between two fluids@4#, little is
known about dynamics.

Previous studies concerning the statics of heteropolym
show that there exists a frozen phase at low temperat
very similar to a spin-glass phase@5#, which is a nonergodic
state characterized by a very slow relaxation. Recent p
nomenological and analytical developments have reprodu
the experimental evidence of aging in spin-glasses@6#. Be-
low a certain temperature, the system relaxes in a slower
slower way as the waiting time—which is the time elaps
between the beginning of the experiment and the observa
time—is increased; the dependence on the waiting tim
clearly proved experimentally in spin-glasses and in ot
glasses@7,8#. The relaxation follows a power law and bo
time-translational invariance and the fluctuation dissipat
theorem are violated. Similar properties have been fo
theoretically for the study of large-time out of equilibriu
dynamics of a manifold in a random potential@9#. These
results are of great interest for systems where disorde
frustration are present, and similar ideas start to be app
for instance, for the rheology of soft glassy materials@10#, or
for the dynamics of structural glasses, where experime
evidence of the violation of the fluctuation-dissipation the
rem has recently been reported@11#.

Concerning the dynamics of heteropolymers, few stud
exist at present@12,13# and some of them show that the
may be some glassy behavior as the temperature is low
@14#, or that the relaxation should follow a stretched exp
nential law @15#. There is indeed numerical evidence
stretched exponential relaxation for randomly branched p
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mers @16#, or for the reptation of polymers in disordere
media @17#, as well as experimental evidence of the sa
phenomenon for glasses and proteins@18#. Moreover, there
is a growing literature about the dynamics of homogene
but strongly frustrated polymer systems, such as polym
melts where stretched-exponential laws are observed thro
computer simulations@19#, and with dynamics very similar
to the one observed in structural glasses or supercooled
uids @20#. Other approaches to the problem of dynamics
heteropolymers in melts use the concept of reptation to c
pute in a phenomenological way the relaxation time o
disordered chain@21#. Finally, another type of interesting
system that could be of interest for the dynamics of prote
can be found in@22#, where a spin system with bot
quenched randomness and ferromagnetic ordering inte
tions is studied.

Our work concerns the study of the Langevin dynamics
a heteropolymer, treated in the mode-coupling approxim
tion ~MCA! scheme. Our motivation for using this approx
mation is based on several previous studies that led to
nificant results. This procedure goes beyond perturba
theory~though not in a very controlled way! and is therefore
useful when one wants to study strong-coupling effects. T
scheme is to expand the microscopic quantities involved
the Langevin equation to lowest nontrivial order in th
potential—as if it was a perturbation procedure—and then
replace in the correction terms the bare correlation functi
~those corresponding to the problem without potential! by
the full correlation functions one wants to compute. Th
amounts to resumming a certain class of diagrams and h
to go further than the weak-coupling regime. This type
procedure has been used by Kraichnan in the context of
bulence as a way to find the Kolmogorov laws starting fro
the Navier-Stokes equation@23#; it has also been used for th
KPZ equation where exponents close to those found by
namic renormalization group were computed@24#. Interest-
ingly, it has also been found that the MCA is exact for som
special models with quenched disorder whose dynamics
be studied exactly in a mean-field approach, using functio
methods; this is true in particular for thep-spin spherical
spin-glass model@25#. So one can hope that the MCA ap
proach is able to capture dynamic effects such as aging
arise from the presence of disorder in a nonperturbative w
©2001 The American Physical Society01-1
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Finally, it has been pointed out that the general coupled
of equations obtained through MCA looks very much li
those found in the context of the mode-coupling theory
troduced by Gotze@20#, which gives a reliable description o
the slow dynamics of supercooled liquids, reinforcing t
link between glassy systems which are frustrated, but con
no disorder, and disordered systems such as spin-glasse

In the following, we show that the same approximati
~MCA! can be used for the dynamics of a disordered po
mer and that out-of-equilibrium features can be found
well. These results may be of relevance for heteropolym
melts, or for very long chains of heteropolymers. From
protein-oriented point of view, such results may not be
rectly applicable, since they are derived for an infinite a
purely random system. However, for large proteins, one m
observe some intermediate slow regime of folding in
globular state, between the fast initial hydrophobic collap
and the final relaxation towards the native state onc
nucleus@26# has been formed.

II. THE MODE-COUPLING APPROACH

A. Formal developments

We introduce here a model of heteropolymer dynam
and explain how to derive a set of coupled integ
differential equations using the mode coupling approxim
tion. We use a standard Hamiltonian for a disordered po
mer, where a quenched potentialV„s,fW (s,t)… is applied and
comes from the random nature of the interactions betw
monomers. In our notations,fW (s,t) is the position of mono-
mers at timet, s being the coordinate of the monomer alo
the chain,s51, . . . ,N. d is the dimensionality of the spac
anda0 is the Kuhn length,

H5
1

2a0
2E ds(

a51

d S ]fa

]s D 2

1E ds V„s,fW ~s,t !…. ~1!

More explicitly, the random potential is

V„s,fW ~s,t !…5E ds8B~s,s8!d„fW ~s,t !2fW ~s8,t !…

5E ds8B~s,s8!E dqW

~2p!d

3exp i(
a

qa[fa(s,t)2fa(s8,t)]. ~2!

We use a bar to perform the average over the disorder,
we assume that the value of the interaction between too
ferent monomers is distributed in a Gaussian way.

B~s,s8!50,

B~s1 ,s18!B~s2 ,s28!5B0
2d~s12s2!d~s182s28!.

We consider the Langevin equation for such a polymer:
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F ]

]t
2

1

a0
2

]2

]s2Gfa~s,t !52
]

]fa~s,t !E ds V„s,fW ~s,t !…

1ha~s,t !, ~3!

with a Gaussian thermal noisehW (s,t),

^ha~s,t !&50,

^ha~s,t !hb~s8,t8!&52Td~s2s8!d~ t2t8!dab .

Our aim is to compute correlation and response functions
at least know their qualitative behavior with time. Followin
earlier studies, we do not assumea priori time-translational
invariance and we define respectively the correlation fu
tion and the response function as quantities depending
two distinct times,t and t8:

C~s,t;s8,t8!5
1

d (
a51

d

^fa~s,t !fa~s8,t8!&, ~4!

G~s,t;s8,t8!5
1

d (
a51

d K ]fa~s,t !

]ha~s8,t8!
L

5
1

d

1

2T (
a51

d

^fa~s,t !ha~s8,t8!&. ~5!

The last identity holds as long as the random noisehW (s,t) is
Gaussian.

During all this study, we shall use Fourier transform
which we define, both for the positionfW (s,t) and for the
correlation functions, withvn52pn/N,

f̃a
n~ t !5

1

NE0

N

eivnsfa~s,t !ds,

G̃n~ t,t8!5
1

NE0

N

eivn(s82s)G~s,t;s8,t8!ds ds8.

The same type of definition applies forh̃a
n(t) and C̃n(t,t8).

The standard procedure in the MCA is first to find t
solutionf̃a

n(t) of the Langevin equation, up to the first non
zero order in perturbation. The dynamic equation can be
written in Fourier space:

]f̃a
n~ t !

]t
52

vn
2

a0
2
f̃a

n~ t !2lW̃a
n~ t !1h̃a

n~ t !, ~6!

where we have added for convenience the coefficientl as
the perturbative parameter;l is eventually set back to 1 a
the end of the expansion. And the quantityW̃a

n(t) is defined
as
1-2
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W̃a
n~ t !5

2

NE0

N

eivnsdsE
0

N

ds8B~s,s8!E dqW

~2p!d
iqa

3exp i(
a

qa„fa(s,t)2fa(s8,t)…, ~7!

If l is equal to 0 we are reduced to the ‘‘bare’’ proble
of an elastic chain in a harmonic potential. Then the Lan
vin equation is exactly solvable and the solution is

f̃a,0
n ~ t !5E

0

t

dt8G̃0
n~ t,t8!h̃a

n~ t !, ~8!

where G̃0
n(t,t8) is the nth Fourier component of the bar

response function, and

G̃0
n~ t,t8!5e2~vn

2/a0
2
!(t2t8)u~ t2t8!. ~9!

In the following we shall seta051.
When one now adds the disorder-dependent termW̃a

n(t)
in the Langevin equation, then

f̃a
n~ t !5E

0

t

dt8G̃0
n~ t,t8!@h̃a

n~ t8!2lW̃a
n~ t8!# ~10!

is the exact solution, which actually gives an implicit equ
tion for the quantity f̃a

n(t) that cannot be solved in
straightforward way.

Note that we have assumed here for the initial condit
that f̃a

n(0)50. This corresponds to a very extreme config
ration where the polymer is completely collapsed. This
also the most practical choice as far as the complexity of
calculation is concerned. Although it is an extreme case,
think that the dynamics in the collapsed phase will still
well described~and this will be discussed in more detail
the last section of this paper!. One could also have chose
random initial conditions, which should not change the fin
long-time results, as was shown, for example, in sim
problems of spin-glass dynamics@27,28#, and also in a study
of a disordered polymer@12#.

One then performs in this expression an expansion u
second order inl, and we refer the reader to Appendix A fo
more details. It is then rather straightforward, though co
putationally lengthy, to computeG̃n(t,t8) and C̃n(t,t8) as
functions of the bare quantities such asG̃0

n(t,t8) and

C̃0
n(t,t8), which are at the end replaced by the full or ‘‘reno

malized’’ quantitiesG̃n(t,t8) andC̃n(t,t8). One finally ends
up with a set of coupled equations which solutions will,
principle, fully describe the dynamics of the original syste
We can write these equations in a compact way:

F ]

]t
1vn

2GG̃n~ t,t8!5d~ t2t8!1E
0

t

dt1 Rn~ t,t1!G̃n~ t,t8!

1E
t8

t

dt1 Sn~ t,t1!G̃n~ t1 ,t8!, ~11!
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F ]

]t
1vn

2GC̃n~ t,t8!5E
0

t

dt1 Rn~ t,t1!C̃n~ t,t8!

1E
0

t8
dt1 Dn~ t,t1!G̃n~ t8,t1!

1E
0

t

dt1 Sn~ t,t1!C̃n~ t1 ,t8!. ~12!

All quantities Rn(t1 ,t2), Sn(t1 ,t2), Dn(t1 ,t2) involved in
the coupled set of equations are defined in Appendix A, a
depend only onG̃p(t,t8) and C̃p(t,t8), with pÞ0. This set
of dynamical equations is rather typical of the mod
coupling approximation, and similar sets of coupled eq
tions have been already encountered, for example,
@9,24,27#. They can either be solved numerically or requ
additional assumptions to get more information on the so
tions.

B. Analysis of the equations

A very difficult task is to solve the set of integro
differential equations described above. One major difficu
lies on the fact that all modes are coupled, and as it
already been observed for example for the mode-coup
equations of the KPZ model@24,29#, the numerical treatmen
for these equations presents numerous problems. We
not been able to make significant progress in that direct
not only should it require a recursive algorithm with care
check for the convergence of all functions, but we also
pect some divergences in the long time regime, which wo
require the introduction of unknown cutoffs.

In our analysis, we took into account all terms found
the former section, without truncating them with too cru
approximations. However, it would be interesting in the f
ture to find a way to simplify these equations~even if the
connection with the initial model becomes then less ob
ous!, that would reproduce the results that we find here.

The first step in the analysis can be done by focusing
the large time limit and looking for an ansatz for the corr
lation functions in that time domain. Let us assume that o
can write, in the limit wheret→` and t8→`, with t8!t,

C̃n~ t,t8!5q fnS t8

t D g

, ~13!

G̃n~ t,t8!5
q8

t
f nS t8

t D g21

. ~14!

Such an ansatz also contains a generalized version o
fluctuation-dissipation theorem~FDT! ~this has already been
introduced in earlier studies@27#!, which can be written

G̃n~ t,t8!5x
]

]t8
C̃n~ t,t8!, ~15!

wherex is the coefficientx5q8/gq.
We want to plug this ansatz~13! and~14! into the mode-

coupling equations, and see whether this is an accept
1-3
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solution. This is done in detail in Appendix B for any tem
peratureT. Let us explain briefly here how the algeb
works.

After replacing into the mode-coupling equations, one
left with implicit equations forq, f n , x, andg, but the de-
pendence on time cancels out in the limit of large times. T
is what makes the ansatz consistent, at least as far as
dependence on time is concerned. We give computatio
details in Appendix B. In particular, in the equation f
C̃n(t,t8), Dn(t1 ,t2) can be written as a sum of four contr
butionsDn

( i )(t1 ,t2), i 50,1,2,3 as shown in Appendix A. Th
terms involvingDn

(2)(t1 ,t2) andDn
(3)(t1 ,t2) are shown to be

negligible in the limit of large times, and also if the temper
ture is not too large: this makes the time cancellation p
sible. All parametersq, f n , x, andg have a dependence o
temperature, which is hard to find analytically. The rema
ing equations onq, f n , x, and g are too difficult to solve
numerically, since they require the introduction of cutoffs
see Appendix B—to stop the divergences in the integ
when the two time arguments become too close to each o
@in particular, bothG̃n(t,t8) andC̃n(t,t8) have different ana-
lytical forms whent8→t, which we do not know#.

The two extreme casesT50 andT5` can be looked at
more closely in this problem, even if we have shown that
above ansatz is an acceptable solution at large times for
temperatureT small enough. In the case whereT50, the
equations can be simplified more, the terms involvi
Dn

(2)(t1 ,t2) and Dn
(3)(t1 ,t2) are actually equal to zero an

one sees easily that the above ansatz still remains valid
the same reasons as the ones explained above~see Appendix
B!. We were also able to show that a time-translational
lution was not acceptable, by taking some appropriate t
functions such as exponentials or stretched exponentials
give details on this point in Appendix B also.

If we study the limitT→`, one is left with a single term
in the equation forC̃n(t,t8):

E
0

t8
dt1 Dn

(3)~ t,t1!G̃n~ t8,t1!50. ~16!

The power-law ansatz used above can no longer satisfy
condition.

However, if one assumes time-translational invarian
and the usual fluctuation-dissipation theorem„G(t)
5@2u(t)/T#]tC(t)… the mode-coupling equations are sim
ply satisfied. In the limit of infinite temperature, one is ac
ally left with the simple Rouse model for a homopolym
chain, and an exponential time relaxation.

Such information about a glassy behavior at low tempe
tures with power-law behavior leads naturally to think of t
existence of a critical temperatureTc that may separate th
glassy, non-FDT, nontime translational invariant regim
from a high temperature regime where the relaxation wo
be typically exponential. Although it is not possible to dete
mine this temperature from our equations, it should be ea
to observe such a phenomenon in simpler models of p
mers, or by studying numerical models of polymers.
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III. AN ALTERNATIVE TREATMENT OF THE MODE-
COUPLING EQUATIONS: FUNCTIONAL

RENORMALIZATION GROUP APPROACH

In view of the difficulties raised by the mode-couplin
equations, one has to search for new analytical method
try and solve them. One of them is to apply a function
renormalization group analysis to the mode-coupling eq
tions themselves. To our knowledge, such a method
never been used in this context. For the present problem,
procedure enables us to have more information about
analytical form of the correlation functions. In particular,
can justify some scaling form for their analytical expre
sions, as soon as one finds a fixed point in the RG proced
that is believed to represent the small frequency, sm
wave-vector regime. This is motivated by the fact that we
mostly interested in the long times limit, and in the lon
distance regime (s2s8→`, along the chain!.

In the case of the disordered polymer, our dynamic R
calculation gives rise to a fixed point. However, the fix
points equations are themselves hard to solve. We also
lieve that such a method could be of interest for simpler a
largely studied systems, such as the KPZ equation, but
did not look at this case here.

In this type of calculation@30#, we want to integrate ou
the fast wave-vector modes and keep only the slow mod
the ones with small wave vectors. One should also, in p
ciple, do the same thing for high frequencies, to keep tr
only of the low frequency part; this can be done by expre
ing all the quantities in frequency space, but we did n
describe this part here for simplicity. In order to integrate o
the fast wave-vector modes, we first switch from discrete
continuous Fourier variables, by replacing(n by
*dDk/(2p)D with an upper cutoffL, whereD is the dimen-
sion of the chain~in our case,D51). The wave vectors such

that L/b,uukW uu,L can be integrated out in all quantitie
whereb5ed l is close to 1 (d l→0); then the only perturba
tive parameter here isd l . After integration, we denote the

quantities Q for which the uukW uu integration is now only
*0

L/bdDk/(2p)D, by Q,.
In order to harmonize the notations with the ones in

preceding section, we now noteG̃k(t,t8) and C̃k(t,t8) the
kth Fourier component of the correlation functions, and s
use the notationDk , Rk , Sk for the mode-coupling kernels

In a more convenient way than the ones used in the p
vious section, the starting mode-coupling equations we u
can be rewritten in the form originally derived in Append
A ~see also@25#!:

C̃k~ t,t8!5C̃0
k~ t,t8!

1E
0

t

dt1E
0

t8
dt2 G̃k~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!,

~17!
1-4
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G̃k~ t,t8!5G̃0
k~ t,t8!1E

0

t

dt1 G̃0
k~ t,t1!

3F E
0

t1
dt2 Rk~ t1 ,t2!G̃k~ t1 ,t8!

1E
0

t1
dt2 Sk~ t1 ,t2!G̃k~ t2 ,t8!G . ~18!

In such a way, we can write for a quantityQ̃k(t1 ,t2), the
following one-order expansion ind l (Q5G,C,R,S,D):

Q̃k~ t1 ,t2!5Q̃k,~ t1 ,t2!2d lQk~ t1 ,t2!. ~19!

The correctionsQk(t1 ,t2) can be computed and only in
volve the different quantitiesG0 and Q,. We give more
details on this computation in Appendix C. In particular, f
Gk(t,t8) andCk(t,t8), we have

Gk~ t,t8!5E
0

t

dt1 G̃0
k~ t,t1!F E

0

t1
dt2 Rk~ t1 ,t2!G̃k~ t1 ,t8!

1E
0

t1
dt2 Sk~ t1 ,t2!G̃k~ t2 ,t8!

1E
0

t1
dt2 Rk~ t1 ,t2!Gk~ t1 ,t8!

1E
0

t1
dt2 Sk~ t1 ,t2!Gk~ t2 ,t8!G , ~20!

Ck~ t,t8!5E
0

t

dt1E
0

t8
dt2@G̃k~ t,t1!Dk~ t1 ,t2!Gk~ t8,t2!

1G̃k~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!

1Gk~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!#. ~21!

The next step is to do a rescaling of all quantities a
write a differential equation for the renormalization flo
where the increment isd l . One has then to make scalin
assumptions, which are expected, at least at the fixed po
if any. Then, if one assumes

Q̃k~ t,t8!5
1

kx
q~ tkz,t8kz!, ~22!

wherez is the dynamic exponent, the renormalized quan
is

Q̃k
R~ t,t8!5b2xQ̃(bk),~b2zt,b2zt8!. ~23!

By expanding this last expression to first order ind l one
finally ends up with

]Q̃k

] l
52xQ̃k~ t,t8!1k

]Q̃k

]k
2zt

]Q̃k

]t
2zt8

]Q̃k

]t8
1Qk~ t,t8!.

~24!
04150
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More specifically, we assumed the following scaling form
which are compatible with the mode-coupling equations:

C̃k~ t,t8!5
1

k2a1D
c~ tkz,t8kz!, ~25!

G̃k~ t,t8!5
1

kz1D
g~ tkz,t8kz!, ~26!

Dk~ t,t8!5
1

k2a2D24z
d~ tkz,t8kz!, ~27!

Rk~ t,t8!5k2zr ~ tkz,t8kz!, ~28!

Sk~ t,t8!5k2zs~ tkz,t8kz!. ~29!

We want now to try the ansatz of the previous sect
@Eqs.~13! and ~14!#, so we now assume more precisely th

C̃k~ t,t8!5
1

k2a1D
c1S t8

t D , ~30!

G̃k~ t,t8!5
1

kz1D

1

tkz
g1S t8

t D , ~31!

Dk~ t,t8!5
1

k2a2D24z
d1S t8

t D , ~32!

Rk~ t,t8!5k2z
1

tkz
r 1S t8

t D , ~33!

Sk~ t,t8!5k2z
1

tkz
s1S t8

t D . ~34!

Due to the scaling nature of all quantities, the derivat
terms]Q̃k/]k and]Q̃k/]t in the flow equations can be sim
plified and expressed in terms ofQ̃k(t,t8), and we end up
with the following set:

]G̃k

] l
522~z1D !G̃k~ t,t8!1Gk~ t,t8!, ~35!

]C̃k

] l
522~D12a!C̃k~ t,t8!1Ck~ t,t8!, ~36!

]Dk

] l
522~2a2D24z!Dk~ t,t8!1Dk~ t,t8!, ~37!

]Rk

] l
54zRk~ t,t8!1Rk~ t,t8!, ~38!

]Sk

] l
54zSk~ t,t8!1Sk~ t,t8!. ~39!
1-5
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The fixed points are obtained by setting thel derivative to
0, and denoting byQ* the fixed-point quantities, and replac
ing in the expressions forGk(t,t8) and Ck(t,t8), we obtain
the self-consistent equations at the fixed point:

~z1D !G̃k,* ~ t,t8!

5~D2z!E
0

t

dt1G̃0
k~ t,t1!F E

0

t1
dt2 Rk* ~ t1 ,t2!G̃k,* ~ t1 ,t8!

1E
0

t1
dt2 Sk* ~ t1 ,t2!G̃k,* ~ t2 ,t8!G , ~40!

~2a1D !C̃k,* ~ t,t8!5~2a1D22z!E
0

t

dt1E
0

t8
dt2

3G̃k,* ~ t,t1!Dk* ~ t1 ,t2!G̃k,* ~ t8,t2!. ~41!

We checked that the power-law ansatz used in the
section is still a solution for these equations of fixed poi
the procedure of replacing the ansatz in the expression
exactly the same as the one described in Appendix B. T
can then justify its use in the mode-coupling equations~11!
and~12! from which we started our analysis, and which re
resent the real-space quantities of interest; the scaling f
of the ansatz is also justified. If we then plug at the fix
point the generalized fluctuation-dissipation theor
G̃k(t,t8)5x(]/]t8)C̃k(t,t8), we obtain the following rela-
tion between exponents:a5z. Further information on the
exponentsa andz could be obtained by solving numerical
coupled equations like Eqs.~40! and ~41!; this will be done
elsewhere.

IV. DISCUSSION AND CONCLUSION

The analysis of the mode-coupling equations using ren
malization group ideas enabled us to write the dynamic c
relation functions of a disordered polymer in terms of scal
functions. Unfortunately, at this point, it does not give mu
insight into the exact asymptotic time and wave-vector
pendence, at large times and large wavelengths. We be
however that this method could be very convenient for m
simple examples of stochastic equations, that are treated
ing mode-coupling techniques.

The main result of the mode-coupling approach is
evidence of the out-of-equilibrium character of the dynam
of heteropolymers, in the thermodynamic limit. The depe
dence of the dynamic correlation functions on two times
the smaller one being the waiting time—implying no tim
translational invariance and a generalized fluctuati
dissipation theorem, is required at low temperatures; m
precisely, a power-law dependence on two times is a solu
of our set of equations. This contains the aging phenome
similar to the one observed in spin-glasses and other type
disordered systems. We expect the aging regime found
to be present as a long transient in finite polymers.

Although we used a very special case of initial conditio
in our study, we think that our results still capture the imp
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tant physical properties of the dynamics of a~disordered!
polymer in a collapsed state. In particular, if glassiness w
not present in such a system, there would be a character
time t after which one would finally have time-translation
invariance, independently of the chosen initial condition~in
particular, even in the case of the initial conditions we cho
here!. However, we find aging and out-of-equilibrium prop
erties at all time scales; this suggests that our approach
captures this glassy dynamical effect, even in the particu
case we considered.

This evidence for glassy behavior was already obtaine
a similar study of the dynamics of heteropolymers by Fra
et al. @12#. Starting from the same Hamiltonian as ours, t
dynamics was studied using a supersymmetric formulation
the Martin-Siggia-Rose functional, which was shown
Kurchan@31# to be useful to study the dynamics of system
for which the solution of the statics is known. Their fin
result is very similar to ours~and they actually start from
random initial conditions!, and the dynamical equations fo
the correlation and response functions are of the mo
coupling type@Eqs.~11! and ~12!#. Using the results on dy-
namics of manifolds in a random potential@32#, one is then
able to predict the aging regime, and a power-law decay
correlation functions, though the precise analytical for
could not be found. These results, obtained with a met
relying on the structure of the statics solution of the probl
@5#, are consistent with ours and the direct dynamical~MCA!
approach.

Calculations similar to the one described above in t
paper can be made by slightly changing the starting Lan
vin equation. We replaced the disordered interactionB(s,s8)
between monomers by a constant attractive interaction c
ficient v, therefore restricting our study to homopolyme
Remarkably enough, we found that the power-law ansatz
holds at low temperature. The corresponding formulas
the MCA equations are given at the end of Appendix A. T
structure of the equations is completely analogous to the
ordered case, and we showed that the power-law ansatz
acceptable solution by following the lines of the calculatio
of Appendix B. Even in the absence of disorder, the mo
coupling equations seem to induce some apparent disord
frustrated systems~such as polymer chains in the collaps
phase in this case!, and lead to nontrivial glassy behavior. I
the MCA approach, it appears that one can capture the f
tration character of a collapsed polymeric chain that ste
from the competition between the attractive interaction
tween monomers and the harmonic potential due to the e
ticity of the chain@the classical mode coupling theory@20#
for glasses also captures frustration in such simple real
tions as binary mixtures of Lennard-Jones~LJ! particles#.

This similarity of behavior between disordered and no
disordered polymers is not very surprising when one reme
bers that mode-coupling equations have very similar str
tures in the disordered and nondisordered version of a g
model @25#. More precisely, it has been previously show
that given a nondisordered but frustrated or chaotic mo
one can find a disordered model of the same class wh
mode-coupling equations are actually exact, and coinc
with the approximate mode-coupling equations of the n
disordered model.~This is, however, not exactly the situatio
1-6
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MODE-COUPLING THEORY FOR HETEROPOLYMERS PHYSICAL REVIEW E63 041501
that occurs here, since the mode-coupling closure is only
approximation scheme for our heteropolymer model.! This
emphasizes the importance of such studies for real glas
which are not characterized by the presence of disorde
particular, our analysis may be helpful to understand the
namics of polymeric glasses, or melts, that also exhibit ag
@8# and vitreous dynamics@19#, qualitatively very similar to
the physics of binary Lennard-Jones fluid mixtures@33#.

It is interesting to note that a great similarity has be
observed in the dynamics of supercooled liquids~modeled
by binary mixtures LJ particles! and of polymer melts,
whereas a few differences are noticeable due to the con
tivity effect of the polymeric system@19#. It has been shown
that the correlation functions and in particular the dynam
structure factor for polymer melts can be well described
the MCT for liquids. However, the mean-square displa
ment shows a subdiffusive behavior compared to the cas
nonconnected LJ particles, due to the connectivity of
chains. This difference occurs in thea regime, at large times
that reflects the rearrangements of the chain at scales la
that the size of a particle’s cage, whereas theb regime, at
small times, corresponds to local movements inside a c
which are the same in the presence or not of connectivity.
the ground of these microscopic mechanisms, it does
seem surprising either, that a disordered polymer melt o
homogeneous melt may have the same kind of dynamic

To summarize, our model provides a tentative theoret
framework which allows to exhibit slow dynamics and agi
in dense phases of homogeneous or disordered polyme
further step in this study would be to find an efficient n
merical algorithm for the resolution of the mode-coupli
equations or of some simplified form of these mode-coupl
equations. This would provide the full solutions for the co
relation functions, as well as for the mean-square displa
ment, as functions of time, and allow for a direct comparis
with the numerical results of Baschnagelet al. @19#.

An important issue that also needs to be clarified is
which way the fluctuation-dissipation theorem is violated
long times. It has been shown very recently@34# that in the
case of systems with short range interactions, the meas
ment of the violation of the dissipation-fluctuation ratio
directly related to the pattern of the replica symmetry bre
ing ~‘‘one-step rsb’’ or ‘‘full rsb’’ !. The statics of the het
eropolymer model studied here were reported in@5# and
showed a one-step replica symmetry breaking, so
fluctuation-dissipation should, according to@34#, be of the
form given by Eq.~15!. In addition, concerning the case o
homopolymers, it would be of great interest to use the fi
principle computations described in@35# and be able to draw
a link between the equilibrium and the dynamical propert
in the glass phase.
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APPENDIX A

In this Appendix, we give the full expressions for th
mode-coupling equations obtained in Sec. II, as well as so
intermediate results.

Starting from Eq.~10!, one performs an expansion to se
ond order inl, which leads to an approximate expression

f̃a
n(t). This expression is the following:

f̃a
n~ t !5f̃a,0

n ~ t !2
2l

N E
0

t

dt8G̃0
n~ t,t8!Wa,0

n ~ t8!

1
2l2

N E
0

t

dt8G̃0
n~ t,t8!E

0

N

ds

3E
0

N

ds8eivnsB~s,s8!E ddq

~2p!d
iqa

3exp i(
a

qa (
mÞ0

(e2 ivms2e2 ivms8)f̃a,0
m (t8)

3(
b

iqb (
pÞ0

~e2 ivps2e2 ivps8!

3E
0

t8
dt9G̃0

p~ t8,t9!Wb,0
p ~ t9!,

where

Wa,0
n ~ t8!5E

0

N

dsE
0

N

ds8eivnsB~s,s8!E ddq

~2p!d
iqa

3exp i(
a

qa (
mÞ0

(e2 ivms2e2 ivms8)f̃a,0
m (t8).

Starting from this expression we calculatedG̃n(t,t8) and
C̃n(t,t8), performing both averages on the random noise a
on the disorder. The result can be written in terms
G̃0

p(t,t8) and C̃0
p(t,t8) only; but the MCA approximation

consists in replacing these quantities by the full unkno
quantities G̃p(t,t8) and C̃p(t,t8), resulting in a set of
coupled Dyson equations:

C̃n~ t,t8!5C̃n
0~ t,t8!

1E
0

t

dt1E
0

t8
dt2 G̃n~ t,t1!Dn~ t1 ,t2!G̃n~ t8,t2!,
1-7
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G̃n~ t,t8!5G̃n
0~ t,t8!1E

0

t

dt1G̃n
0~ t,t1!

3F E
0

t1
dt2 Rn~ t1 ,t2!G̃n~ t1 ,t8!

1E
0

t1
dt2 Sn~ t1 ,t2!G̃n~ t2 ,t8!G .

The mode-coupling equations can be rewritten as integ
differential equations, performing on the left- and right-ha

sides of the previous equations a convolution withG̃n
021 ~see

also @25#!. The resulting set of equations is the one intr
duced in Sec. II:

F ]

]t
1vn

2GG̃n~ t,t8!5d~ t2t8!1E
0

t

dt1 Rn~ t,t1!G̃n~ t,t8!

1E
t8

t

Sn~ t,t1!G̃n~ t1 ,t8!,

F ]

]t
1vn

2GC̃n~ t,t8!5E
0

t

dt1 Rn~ t,t1!C̃n~ t,t8!

1E
0

t8
dt1 Dn~ t,t1!G̃n~ t8,t1!

1E
0

t

dt1 Sn~ t,t1!C̃n~ t1 ,t8!.

The term *0
t dt1 Rn(t,t1) plays the role of a mass and

given by the following expression:

Rn~ t1 ,t2!52
2B0

2

N3

1

~2p!dE0

N

ds1E
0

N

ds18~12eivn(s182s1)!

3 (
pÞ0

~12eivp(s12s18)!G̃p~ t1 ,t2!

@D~s1 ,s18 ;t1 ,t2!#222d/23X~s1 ,s18 ;t1!Y~s1 ,s18 ;t1 ,t2!.

The quantitySn(t1 ,t2) can be seen as the self-energy as
ciated with the corresponding Dyson equations:

Sn~ t1 ,t2!5
2B0

2

N3

1

~2p!dE0

N

ds1E
0

N

ds18~12eivn(s182s1)!

3 (
pÞ0

~12eivp(s12s18)!G̃p~ t1 ,t2!

3@D~s1 ,s18 ;t1 ,t2!#222d/2@X~s1 ,s18 ;t1!

3X~s1 ,s18 ;t2!12Y2~s1 ,s18 ;t1 ,t2!#.
04150
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Finally, Dn(t1 ,t2) can be seen as a ‘‘renormalized’’ nois
correlator, whose expression is reported here:

Dn~ t1 ,t2!5Dn
(0)~ t1 ,t2!1Dn

(1)~ t1 ,t2!1Dn
(2)~ t1 ,t2!

1Dn
(3)~ t1 ,t2!.

Each term can be computed separately:

Dn
(0)~ t1 ,t2!5

2T

N
d~ t12t2!,

Dn
(1)~ t1 ,t2!5

4B0
2

N2

1

~2p!dE0

N

ds1E
0

N

ds18Y~s1 ,s18 ;t1 ,t2!

3@D~s1 ,s18 ;t1 ,t2!#212d/2,

Dn
(2)~ t1 ,t2!5

2B0
2

N2

2T

N

1

~2p!dE0

N

ds1E
0

N

ds18~12eivn(s182s1)!

3 (
pÞ0

E
0

t2
dt3 G̃p~ t2 ,t3!~12eivn(s12s18)!

3@D~s1 ,s18 ;t1 ,t2!#222d/2

3S 23X~s1 ,s18 ;t3!Y~s1 ,s18 ;t2 ,t3!

3E
0

t2
dt4 d~ t12t4!G̃n~ t2 ,t4!

1@X~s1 ,s18 ;t2!X~s1 ,s18 ;t3!

12Y2~s1 ,s18 ;t2 ,t3!#

3E
0

t3
dt4 d~ t12t4!G̃n~ t3 ,t4! D ,

Dn
(3)~ t1 ,t2!5Dn

(2)* ~ t2 ,t1!.

Finally, we used the following notations:

X~s1 ,s18 ;t1!5 (
mÞ0

ue2 ivms12e2 ivms18u2C̃m~ t1 ,t1!,

Y~s1 ,s18 ;t1 ,t2!5 (
mÞ0

ue2 ivms12e2 ivms18u2C̃m~ t1 ,t2!,

D~s1 ,s18 ;t1 ,t2!5X~s1 ,s18 ;t1!X~s1 ,s18 ;t2!

2Y2~s1 ,s18 ;t1 ,t2!.

Let us now explain briefly what happens in the nondis
dered case, where the random variableB(s,s8) is replaced
by a constantv. The corresponding MCA equations hav
exactly the same structure as in the disordered case@Eqs.
~11! and ~12!#. The only differences are in the detailed ex
1-8
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pressions of the kernels, which are more complicated—in
disordered case, some simplifications could occur due to
averaging over disorder, but this is not the case any mor
there is no disorder.

The ‘‘mass’’ kernel is

Rn~ t1 ,t2!5Rn
(1)~ t1 ,t2!1Rn

(2)~ t1 ,t2!,

Rn
(1)~ t1 ,t2!5

2v

N2
d~ t1 ,t2!E

0

N

ds1E
0

N

ds18~12eivn(s182s1)!

3@X~s1 ,s18 ;t2!#212d/2,
04150
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Rn
(2)~ t1 ,t2!52

2v2

N3

1

~2p!dE0

N

ds1E
0

N

ds18~12eivn(s182s1)!

3 (
pÞ0

~e2 ivps12e2 ivps18!G̃p~ t1 ,t2!

3E
0

N

ds2 eivps2E
0

N

ds28

3@W~s1 ,s18 ;s2 ,s28 ;t1 ,t2!#222d/2

33X~s1 ,s18 ;t1!Z~s1 ,s18 ;s2 ,s28 ;t1 ,t2!.

The ‘‘self-energy’’ Sn(t1 ,t2) is given by
Sn~ t1 ,t2!5
2v2

N3

1

~2p!dE0

N

ds1 e2 ivns1E
0

N

ds18(
pÞ0

~e2 ivps12e2 ivps18!G̃p~ t1 ,t2!E
0

N

ds2 eivps2E
0

N

ds28~eivns22eivns28!

3@W~s1 ,s18 ;s2 ,s28 ;t1 ,t2!#222d/2@X~s1 ,s18 ;t1!X~s2 ,s28 ;t2!12Z2~s1 ,s18 ;s2 ,s28 ;t1 ,t2!#.

Finally, the ‘‘renormalized’’ noise correlatorDn(t1 ,t2) has the following expression:

Dn~ t1 ,t2!5(
i 50

5

Dn
( i )~ t1 ,t2!.

Each term can be computed separately:

Dn
(0)~ t1 ,t2!5

2T

N
d~ t12t2!,

Dn
(1)~ t1 ,t2!5

2v
N

2T

N
G̃n~ t2 ,t1!E

0

N

dsE
0

N

ds8~12eivn(s82s)!@X~s,s8,t2!#212d/2,

Dn
(3)~ t1 ,t2!5

4v2

N2

1

~2p!dE0

N

ds1E
0

N

ds18E
0

N

ds2E
0

N

ds28 eivn(s12s2)Z~s1 ,s18 ;s2 ,s28 ;t1 ,t2!@W~s1 ,s18 ;s2 ,s28 ;t1 ,t2!#212d/2,

Dn
(4)~ t1 ,t2!5

2v2

N2

2T

N

1

~2p!dE0

N

ds1 e2 ivns1E
0

N

ds18E
0

N

ds2E
0

N

ds28

3 (
pÞ0

~eivp(s22s1)2eivp(s22s18)!E
0

t2
dt3G̃p~ t2 ,t3!@W~s1 ,s18 ;s2 ,s28 ;t1 ,t2!#222d/2

3S 23X~s1 ,s18 ;t2!Z~s1 ,s18 ;s2 ,s28 ;t2 ,t3!~eivns12eivns18!E
0

t2
dt4 d~ t12t4!G̃n~ t2 ,t4!

1@X~s1 ,s18 ;t2!X~s1 ,s18 ;t3!12Z2~s1 ,s18 ;s2 ,s28 ;t2 ,t3!#~eivns22eivns28!E
0

t3
dt4 d~ t12t4!G̃n~ t3 ,t4! D ,

Dn
(2)~ t1 ,t2!5Dn

(1)* ~ t2 ,t1!,

Dn
(5)~ t1 ,t2!5Dn

(4)* ~ t2 ,t1!.

Finally, we used the following notations:
1-9
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X~s1 ,s18 ;t1!5 (
mÞ0

ue2 ivms12e2 ivms18u2C̃m~ t1 ,t1!,

Z~s1 ,s18 ;s2 ,s28 ;t1 ,t2!5 (
mÞ0

~e2 ivms12e2 ivms18!

3~e2 ivms22e2 ivms28!C̃m~ t1 ,t2!,

W~s1 ,s18 ;s2 ,s28 ;t1 ,t2!5X~s1 ,s18 ;t1!X~s2 ,s28 ;t2!

2Z2~s1 ,s18 ;s2 ,s28 ;t1 ,t2!.

Let us stress here that, thanks to the technical similari
between the MCA equations for the disordered and n
disordered case, the analytical computations develope
Appendix B also apply naturally to the homopolymeric sy
tem.

APPENDIX B

In this appendix, we show how the ansatz proposed
Eqs. ~13! and ~14! can be a suitable solution for the mod
coupling equations obtained in Sec. II.

We give the expressions of the different terms introduc
in Appendix A, after performing adequate change of va
ables, after the power-law ansatz has been plugged into t
terms. Whenever required, we introduced lower and up
cut-offs, assuming that in the extreme regimes of tim
~short times ort8→t, for which we do not have explici
analytical forms! the integrals are actually convergent, a
that the time scaling we find is not modified by these con
butions. In all equations we neglect the derivative term
which is justified in the limitt8!t.

1. Equation for G̃n„t,t8… †see Eq.„11…‡

~i! The first term in front of the propagator in the righ
hand side of the equation is comparable to a mass:

E
0

t

dt1 Rn~ t,t1!52
2B0

2

N2

1

~2p!d

3E
0

N

ds~12e2 ivns!
3q8

2q
@X~s!#212d

3E
0

12e

du u2112g~12u2g!222d/2.

This factor is independent of time, up to the cutoff 12e.
~ii ! Concerning the second term, it is in fact proportion

to G̃n(t,t8):

E
t8

t

Sn~ t,t1!G̃n~ t1 ,t8!

5
2B0

2

N2

1

~2p!dE0

N

ds~12e2 ivns!
q82f n

2q
@X~s!#212d

3E
t8/t.w

12e

du u21~12u2g!222 d/2

3@11u2g#
1

t S t8

t D g21

.
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Finally, given the cutoffsw and 12e, all terms in the equa-
tion for G̃n(t,t8) are proportional to each other, and hen
the dependence on time cancels out.

2. Equation for C̃n„t,t8… †see Eq.„12…‡

~i! The first new term that has to be computed is in fa
proportional toC̃n(t,t8):

E
t8

t

Sn~ t,t1!C̃n~ t1 ,t8!

5
2B0

2

N2

1

~2p!dE0

N

ds~12e2 ivns!
q8 f n

2
@X~s!#212d

3E
w

12e

du u21~12u2g!222d/2@112u2g#S t8

t D g

.

~ii ! The remaining terms coming from theDn(t,t1) con-
tribution can be simplified. First, whent8,t, it is easy to see
that the ones involvingDn

(0)(t,t1) andDn
(2)(t,t1) are equally

zero.
~iii ! The Dn

(1)(t,t1) contribution is again proportional to

C̃n(t,t8),

E
0

t8
dt1Dn

(1)~ t,t1!G̃n~ t8,t1!

5
4B0

2

N

1

~2p!dE0

N

ds q8 f n@X~s!#212d
1

2g S t8

t D g

.

~iv! Finally, the last term has a different time dependen

E
0

t8
dt1 Dn

(3)~ t,t1!G̃n~ t8,t1!

5
2B0

2T

N2

1

~2p!dE0

N

ds~12e2 ivns!
q8

q
~q8 f n!2@X~s!#212d

3S 23E
w

1

du u2g22E
0

12e

dv v2g21@12v2g#222d/2

1E
w

1

du u2g22E
w

12e

dv v21@12v2g#222d/2D
3

1

t S t8

t D g21

.

Because of its scaling behavior int andt8, this term is in fact
a subdominant term compared toC̃n(t,t8) in the limit t
→` andt8→`, t8!t. We can neglect it in the limit of large
times, and also provided that the temperatureT is not too
large. Then all terms in the equation forC̃n(t,t8) have the
same time dependence, which can then be cancelled.
1-10
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As was already mentioned in the main text, we tried so
other trial functions than the power-law ansatz. In particu
we tried time-translational invariant~TTI! exponential and
stretched exponential solutions, following the same alge
as the one described just above. These functions do
work, as they do not lead to a time cancellation of the mo
coupling equations and rather lead to physical contradictio

Let us show briefly why these solutions are not acce
able. For simplicity we use here stretched or pure expon
tials ~as they would be the most expected solutions in
case of TTI!. Namely, we take, forg<1,

C̃n~ t,t8!5qne2 f n(t2t8)g
,

G̃n~ t,t8!5x
]

]t8
C̃n~ t,t8!5xqng~ t2t8!g21e2 f n(t2t8)g

.

We assume these solutions to be valid for large times,
especially if the time differencet2t8 is small. Let us con-
sider here the integro-differential equation forG̃n(t,t8). In
this equation, the first term on the right-hand sid
*0

t dt1 Rn(t,t1)G̃n(t,t8) may break TTI. Using the TTI an
satz, we actually find that the time dependence
*0

t dt1 Rn(t,t1) is the following:

E
0

t

dt1 Rn~ t,t1!.E
0

t

dt1~ t2t1!2g(11d/2),

If 1 2g(11d/2).0, this integral is convergent, and b
haves liket12g(11d/2), which goes to infinity at large times
Consequently, the term*0

t dt1 Rn(t,t1)G̃n(t,t8) violates TTI.
If 1 2g(11d/2),0, the integral is divergent fort1→t,

and one can see easily that one needs a different behavi
G̃n(t,t1) in this region of time, which violates TTI. This is
04150
e
r,

ra
ot
-
s.
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n-
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d

,

f

of

nonphysical situation as TTI is all the more justified as t
time difference is small. So in both cases, the TTI assum
tion gives contradictory results, which shows that this ki
of hypothesis does not hold here.

APPENDIX C

We present in this appendix a more complete set of res
and intermediate computations for the RG approach to
mode-coupling equations presented in Sec. III. We start fr
Eqs.~17! and ~18! that were originally derived at the begin
ning of Appendix A.

In the expressions forDk ,Rk ,Sk , as we take the continu
ous Fourier variable, integrations of the form*0

L dDp/(2p)D

can be found, whereL is an upper cutoff. As we want to
integrate out large wave-vector modes, we write

E
0

L dDp

~2p!D
A~p!5E

0

L/b dDp

~2p!D
A~p!

1E
L/b

L dDp

~2p!D
A~p!

.E
0

L/b dDp

~2p!D
A~p!1Ld lA~L!

in the limit d l→0, with b5ed l .
We noteQ̃k, the quantityQ̃ obtained after integration o

the fast modes, where only integrals of the for
*0

L/bdDp/(2p)D remain. This leads to the one-order expa
sion in d l Eq. ~19! of the quantitiesDk ,Rk ,Sk . As an ex-
ample, we give here the expression forRk(t1 ,t2), but do not
mention the other ones as the formulas are quite com
cated:
Rk~ t1 ,t2!5
2B0

2

N3

3L

~2p!dE0

N

ds1E
0

N

ds18~12eik(s182s1)!@D~s1 ,s18 ;t1 ,t2!#222d/2

3F ~12eiL(s12s18)!G̃L~ t1 ,t2!X~s1 ,s18 ;t1!Y~s1 ,s18 ;t1 ,t2!12$12 cos@L~s12s18!#%C̃L~ t1 ,t1!

3E
0

L

dp~12eip(s12s18)!G̃p~ t1 ,t2!Y~s1 ,s18 ;t1 ,t2!12$12 cos@L~s12s18!#%C̃L~ t1 ,t2!

3E
0

L

dp~12eip(s12s18)!G̃p~ t1 ,t2!X~s1 ,s18 ;t1!22S 21
d

2D $12 cos@L~s12s18!#%

D~s1 ,s18 ;t1 ,t2!

3E
0

L

dp~12eip(s12s18)!G̃p~ t1 ,t2!X~s1 ,s18 ;t1!Y~s1 ,s18 ;t1 ,t2!@X~s1 ,s18 ;t1!C̃L~ t2 ,t2!

1X~s1 ,s18 ;t2!C̃L~ t1 ,t1!22Y~s1 ,s18 ;t1 ,t2!C̃L~ t1 ,t2!#G ,

with
1-11
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X~s1 ,s18 ;t1!52E
0

L

dp$12 cos@p~s12s18!#%C̃p~ t1 ,t1!,

Y~s1 ,s18 ;t1 ,t2!52E
0

L

dp$12 cos@p~s12s18!#%C̃p~ t1 ,t2!.

Then we used the expansions ind l Eq. ~19! of Rk ,Sk ,Dk to find the ones forG̃k and C̃k. This is done by writing the
following simple algebra forG̃k and C̃k:

G̃k~ t,t8!.G̃0
k~ t,t8!1E

0

t

dt1G̃0
k~ t,t1!F E

0

t1
dt2@Rk

,~ t1 ,t2!2d lRk~ t1 ,t2!#@G̃k,~ t1 ,t8!2d lGk~ t1 ,t8!#

1E
0

t1
dt2@Sk

,~ t1 ,t2!2d lSk~ t1 ,t2!#@G̃k,~ t2 ,t8!2d lGk~ t2 ,t8!#G
.G̃k,~ t,t8!2d l E

0

t

dt1 G̃0
k~ t,t1!F E

0

t1
dt2 Rk~ t1 ,t2!G̃k~ t1 ,t8!1E

0

t1
dt2 Sk~ t1 ,t2!G̃k~ t2 ,t8!

1E
0

t1
dt2 Rk~ t1 ,t2!Gk~ t1 ,t8!1E

0

t1
dt2 Sk~ t1 ,t2!Gk~ t2 ,t8!G ,

C̃k~ t,t8!.C̃0
k~ t,t8!1E

0

t

dt1E
0

t8
dt2@G̃k,~ t,t1!2d lGk~ t,t1!#@Dk

,~ t1 ,t2!2d lDk~ t1 ,t2!#@G̃k~ t8,t2!2d lGk~ t8,t2!#

.C̃k,~ t,t8!2d l E
0

t

dt1E
0

t8
dt2@G̃k~ t,t1!Dk~ t1 ,t2!Gk~ t8,t2!1G̃k~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!

1Gk~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!#,

which gives the following expressions forGk(t,t8) andCk(t,t8) @Eqs.~20! and ~21!#:

Gk~ t,t8!5E
0

t

dt1 G̃0
k~ t,t1!F E

0

t1
dt2 Rk~ t1 ,t2!G̃k~ t1 ,t8!1E

0

t1
dt2 Sk~ t1 ,t2!G̃k~ t2 ,t8!1E

0

t1
dt2 Rk~ t1 ,t2!Gk~ t1 ,t8!

1E
0

t1
dt2 Sk~ t1 ,t2!Gk~ t2 ,t8!G ,

Ck~ t,t8!5E
0

t

dt1E
0

t8
dt2@G̃k~ t,t1!Dk~ t1 ,t2!Gk~ t8,t2!1G̃k~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!1Gk~ t,t1!Dk~ t1 ,t2!G̃k~ t8,t2!#.

We used then an expected scaling form for all functions, as is illustrated in the main text by Eqs.~22! and ~25!–~29!.
The rescaling step used in the RG procedure is represented by Eq.~23! and can be detailed in the following way fo

Q̃k(t,t8):

Q̃k
R~ t,t8!5b2xQ̃(bk),~b2zt,b2zt8!

.~12d lx!F Q̃k,~ t,t8!1d lk
]Q̃k,~ t,t8!

]k
2d lzt

]Q̃k,~ t,t8!

]t
2d lzt8

]Q̃k,~ t,t8!

]t8
G

.Q̃k,~ t,t8!1d l F2xQ̃k,~ t,t8!1k
]Q̃k,~ t,t8!

]k
2zt

]Q̃k,~ t,t8!

]t
2zt8

]Q̃k,~ t,t8!

]t8
G

.Q̃k~ t,t8!1d l FQk~ t,t8!2xQ̃k~ t,t8!1k
]Q̃k~ t,t8!

]k
2zt

]Q̃k~ t,t8!

]t
2zt8

]Q̃k~ t,t8!

]t8
G ,

so that taking the limitd l→0, one ends up with the flow equation forQ̃k(t,t8):
041501-12
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]Q̃k~ t,t8!

] l
52xQ̃k~ t,t8!1k

]Q̃k~ t,t8!

]k
2zt

]Q̃k~ t,t8!

]t
2zt8

]Q̃k~ t,t8!

]t8
1Qk~ t,t8!.

Using now the fact that for any function with a scaling form of the type:Xk(t,t8)5(1/kb) f (t8/t), one has

k
]X

]k
2zt

]X

]t
2zt8

]X

]t8
52bX,

and forXk(t,t8)5(1/kb)(1/t) f (t8/t), one has

k
]X

]k
2zt

]X

]t
2zt8

]X

]t8
52~b2z!X,

we can simplify the last equation and finally find Eqs.~35!–~39!.
The flow equations~35!–~39! lead to the following fixed points:

2~z1D !G̃k,* ~ t,t8!5Gk~ t,t8!,

2~2a1D !C̃k,* ~ t,t8!5Ck~ t,t8!,

2~2a2D24z!Dk,* ~ t,t8!5Dk~ t,t8!,

4zRk,* ~ t,t8!52Rk~ t,t8!,

4zSk,* ~ t,t8!52Sk~ t,t8!.

We replaced allQk quantities by these values in Eqs.~20! and~21!, and found the final mode-coupling equations at the fix
point:

~z1D !G̃k,* ~ t,t8!5~D2z!E
0

t

dt1 G̃0
k~ t,t1!F E

0

t1
dt2 Rk* ~ t1 ,t2!G̃k,* ~ t1 ,t8!1E

0

t1
dt2 Sk* ~ t1 ,t2!G̃k,* ~ t2 ,t8!G ,

~2a1D !C̃k,* ~ t,t8!5~2a1D22z!E
0

t

dt1E
0

t8
dt2 G̃k,* ~ t,t1!Dk* ~ t1 ,t2!G̃k,* ~ t8,t2!.

These correspond to Eqs.~40! and ~41! which are discussed in the main text.
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