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Mode-coupling theory for heteropolymers
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We study the Langevin dynamics of a heteropolymer by means of a mode-coupling approximation scheme,
giving rise to a set of coupled integro-differential equations relating the response and correlation functions. The
analysis shows that there is a regime at low temperature characterized by out-of-equilibrium dynamics, with
violation of time-translational invariance and of the fluctuation-dissipation theorem. The onset of aging dy-
namics at low temperatures gives insight into the nature of the slow dynamics of a disordered polymer. We also
introduce a renormalization-group treatment of our mode-coupling equations, which supports our analysis, and
might be applicable to other systems.
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[. INTRODUCTION mers[16], or for the reptation of polymers in disordered
media[17], as well as experimental evidence of the same
The dynamics of a heteropolymer chain is relevant for thephenomenon for glasses and protefii8]. Moreover, there
problem of protein folding and also from a fundamentalis a growing literature about the dynamics of homogeneous
point of view. Since a protein is composed of monomers ofout strongly frustrated polymer systems, such as polymer
different chemical natures, it is important to understand theanelts where stretched-exponential laws are observed through
effect of heterogeneity on the kinetics of a polymer chain.computer simulation§19], and with dynamics very similar
Such results might give insight into the possible foldingto the one observed in structural glasses or supercooled lig-
pathways of proteins or longer chains. Although the influ-uids [20]. Other approaches to the problem of dynamics of
ence of quenched or annealed disorder on the thermodynarheteropolymers in melts use the concept of reptation to com-
ics of polymers is a largely investigated area of st(ifffy  pute in a phenomenological way the relaxation time of a
together with the effect of random fielfi8], random charges disordered chaif21]. Finally, another type of interesting
along the chairjpolyelectrolytes and polyampholy)d8], in  system that could be of interest for the dynamics of proteins
solution or at the interface between two fluidy, little is can be found in[22], where a spin system with both
known about dynamics. quenched randomness and ferromagnetic ordering interac-
Previous studies concerning the statics of heteropolymersons is studied.
show that there exists a frozen phase at low temperature, Our work concerns the study of the Langevin dynamics of
very similar to a spin-glass phaf®|, which is a nonergodic a heteropolymer, treated in the mode-coupling approxima-
state characterized by a very slow relaxation. Recent pheion (MCA) scheme. Our motivation for using this approxi-
nomenological and analytical developments have reproducemation is based on several previous studies that led to sig-
the experimental evidence of aging in spin-glag€gsBe- nificant results. This procedure goes beyond perturbation
low a certain temperature, the system relaxes in a slower arttieory(though not in a very controlled wawand is therefore
slower way as the waiting time—which is the time elapseduseful when one wants to study strong-coupling effects. The
between the beginning of the experiment and the observatioscheme is to expand the microscopic quantities involved in
time—is increased; the dependence on the waiting time ithe Langevin equation to lowest nontrivial order in the
clearly proved experimentally in spin-glasses and in othepotential—as if it was a perturbation procedure—and then to
glasseq7,8]. The relaxation follows a power law and both replace in the correction terms the bare correlation functions
time-translational invariance and the fluctuation dissipationthose corresponding to the problem without poteptiat
theorem are violated. Similar properties have been foundhe full correlation functions one wants to compute. This
theoretically for the study of large-time out of equilibrium amounts to resumming a certain class of diagrams and hence
dynamics of a manifold in a random potent{@l]. These to go further than the weak-coupling regime. This type of
results are of great interest for systems where disorder qorocedure has been used by Kraichnan in the context of tur-
frustration are present, and similar ideas start to be appliedyulence as a way to find the Kolmogorov laws starting from
for instance, for the rheology of soft glassy materfdl§], or ~ the Navier-Stokes equatig@3]; it has also been used for the
for the dynamics of structural glasses, where experimentdkPZ equation where exponents close to those found by dy-
evidence of the violation of the fluctuation-dissipation theo-namic renormalization group were compufeddl]. Interest-
rem has recently been reportgtl]. ingly, it has also been found that the MCA is exact for some
Concerning the dynamics of heteropolymers, few studiespecial models with quenched disorder whose dynamics can
exist at presenf12,13 and some of them show that there be studied exactly in a mean-field approach, using functional
may be some glassy behavior as the temperature is loweredethods; this is true in particular for th@spin spherical
[14], or that the relaxation should follow a stretched expo-spin-glass mode]25]. So one can hope that the MCA ap-
nential law [15]. There is indeed numerical evidence of proach is able to capture dynamic effects such as aging that
stretched exponential relaxation for randomly branched polyarise from the presence of disorder in a nonperturbative way.
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Finally, it has been pointed out that the general coupled set
of equations obtained through MCA looks very much like
those found in the context of the mode-coupling theory in-
troduced by Gotzg20], which gives a reliable description of + . (si) 3
the slow dynamics of supercooled liquids, reinforcing the Mal >t
link between glassy systems which are frustrated, but contain
no disorder, and disordered systems such as spin-glasses.With a Gaussian thermal noisg(s,t),

In the following, we show that the same approximation
(MCA) can be used for the dynamics of a disordered poly- (14(5,1))=0,
mer and that out-of-equilibrium features can be found as
well. These results may be_of relevance for heteropolymer (Ma(S ) na(S 1)) =2T8(5—S) S(t—1') 8,5
melts, or for very long chains of heteropolymers. From a

proteln—om_anted point of view, such _results may not be di- Our aim is to compute correlation and response functions, or
rectly applicable, since they are derived for an infinite and

urely random system. However, for large proteins, one maat least know their qualitative behavior with time. Following
burely y gep Larlier studies, we do not assumeriori time-translational
observe some intermediate slow regime of folding in the

Sinvariance and we define respectively the correlation func-
globular state, between the fast initial hydrophobic collapse
. . . tion and the response function as quantities depending on
and the final relaxation towards the native state once

nucleus[26] has been formed. o distinct timest andt':

g 1
A 2| P07 ey dsveden)

Il. THE MODE-COUPLING APPROACH C(S,t;s/,t/):% > (pa(s )b (s 1)), (4)
A. Formal developments :
We introduce here a model of heteropolymer dynamics 14 J i
and explain how to derive a set of coupled integro- G(s,tis' t')= i D < ba(S;t) >

differential equations using the mode coupling approxima- Ina(s’,t")
tion. We use a standard Hamiltonian for a disordered poly-

mer, where a quenched potenti&(s, (s,t)) is applied and
comes from the random nature of the interactions between

monomers. In our notationaa(s,t) is the position of mono-

mers at timet, s being the coordinate of the monomer along The last identity holds as long as the random ncij(;at) is
the chains=1, ... N. dis the dimensionality of the space Gaussian.

andag is the Kuhn length, During all this study, we shall use Fourier transforms,
d which we define, both for the positio&(s,t) and for the

d
o7 2, (ba(sUma(s'1)). (5

Q_Ii—\
—||"‘

1 E ) J’ ds\V(s,d(s,)). (1) correlation functions, witho,=2an/N,
2aO
~n 1M iw,S
More explicitly, the random potential is ()= Nfo e'“ng,(s,t)ds,

V(s,JS(s,t))=f ds'B(s,s") 8(¢(s,t) — p(s',1)) &)= 1fNeiwn<S’—S>G(st-s’ s de
) —N 0 15O .

fdsB(ss)f o~ ~
(27)d The same type of definition applies faf(t) andC"(t,t").
The standard procedure in the MCA is first to find the
Xexpi Y, quld.(st)—d.(s',1)]. (2) solutiond’(t) of the Langevin equation, up to the first non-
@ zero order in perturbation. The dynamic equation can be re-

written in Fourier space:
We use a bar to perform the average over the disorder, and

we assume that the value of the interaction between too dif-
ferent monomers is distributed in a Gaussian way. Iba(V) _
at

2
Wn~ ~ ~
— PR NWL(D) + 740, ()
- Eh)
B(s,s’')=0,
where we have added for convenience the coefficielgs
B(s1,5;)B(S;,55) =B368(S;—5,) 8(S| —Sh). the perturbative parametex; is eventually set back to 1 at
the end of the expansion. And the quanﬁt@(t) is defined
We consider the Langevin equation for such a polymer: as
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- 2 (N | N da J 2|R&n ’ ft =n ’
ney— < iwnS / ’ i —+ o |C(t,t")= | dt; R,(t,t))C"(t,t")
WO (t) Nfo e dsf0 ds'B(s,s )f (2w)d|q“ o Ten|C(LT) LAt Ra(tty
t ~
XexpiY Ga(Ba(s,t) = da(s' 1), (7) * JO dty Dn(t,t) G, ta)
If N\ is equal to O we are reduced to the “bare” problem + Jtdtlin(t,tl)én(tl,t’). (12)
of an elastic chain in a harmonic potential. Then the Lange- 0

vin equation is exactly solvable and the solution is . ) )
a y All quantities Ry(tq,t2), 2n(tq1,t2), Dy(ty,ty) involved in

- o ~ the coupled set of equations are defined in Appendix A, and
boo)= fodt’GS(t,t’)ng(t), 8 depend only orGGP(t,t’) and CP(t,t'), with p+0. This set

of dynamical equations is rather typical of the mode-

coupling approximation, and similar sets of coupled equa-
tions have been already encountered, for example, in
[9,24,27. They can either be solved numerically or require

additional assumptions to get more information on the solu-
tions.

where (~38(t,t’) is the nth Fourier component of the bare
response function, and

ég(t,t’):e*<wﬁ’a3>(t*t')0(t—t’). 9)

In the following we shall se,=1.
When one now adds the disorder-dependent t@fb@t) o ) )
in the Langevin equation, then _ A very d|ff|cu_lt task is to solve the set o_f integro-
differential equations described above. One major difficulty
- t ~ _ lies on the fact that all modes are coupled, and as it has
d)ﬂ(t):f dt’Go(t,t")[75(t") —AWL(t))]  (10)  already been observed for example for the mode-coupling
0 equations of the KPZ modg24,29, the numerical treatment
for these equations presents numerous problems. We have
not been able to make significant progress in that direction;

B. Analysis of the equations

is the exact solution, which actually gives an implicit equa-

tion for the quantity ¢5(t) that cannot be solved in a not only should it require a recursive algorithm with careful
straightforward way. o _check for the convergence of all functions, but we also ex-

Ngte that we have assumed here for the initial cond|t|0rbect some divergences in the long time regime, which would
that ¢"(0)=0. This corresponds to a very extreme configu-require the introduction of unknown cutoffs.
ration where the polymer is completely collapsed. This is In our analysis, we took into account all terms found in
also the most practical choice as far as the complexity of théne former section, without truncating them with too crude
calculation is concerned. Although it is an extreme case, wapproximations. However, it would be interesting in the fu-
think that the dynamics in the collapsed phase will still beture to find a way to simplify these equatiofeven if the
well described(and this will be discussed in more detail in connection with the initial model becomes then less obvi-
the last section of this paperOne could also have chosen ous, that would reproduce the results that we find here.
random initial conditions, which should not change the final The first step in the analysis can be done by focusing on
long-time results, as was shown, for example, in similarthe large time limit and looking for an ansatz for the corre-
problems of spin-glass dynamif27,28, and also in a study lation functions in that time domain. Let us assume that one
of a disordered polymdrl2]. can write, in the limit wherd—c andt’ —o, with t’ <t,

One then performs in this expression an expansion up to

second order im,. and we refer the (eader to Appendix A for Bt ) =gt (_/) Y 13

more details. It is then rather straightforward, though com- ' Mt

putationally lengthy, to comput&"(t,t’) and C"(t,t’) as A

functions of the bare quantities such &h(t,t’) and G(t,t)= q_fn(t_ (14)
Cg(t,t’), which are at the end replaced by the full or “renor- t t

malized” quantitiesG"(t,t') andC"(t,t’). One finally ends Such an ansatz also contains a generalized version of the

up with a set of coupled equations which solutions will, in fluctuation-dissipation theoref¥DT) (this has already been

principle, fully describe the dynamics of the original system.introduced in earlier studig®7]), which can be written
We can write these equations in a compact way:

én(t,t'):xién(t,t'), (15)
at’

2
wn

~ t ~
—+ G”(t,t'):a(t—t’)+f dt, Ry(t,t) B (4,t)
0
. wherex is the coefficientk=q’/vq.
+f dt, 3, (t,t) Bt t) (11) We want to plug this ansaid.3) and(14) into the mode-
poorome v coupling equations, and see whether this is an acceptable
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solution. This is done in detail in Appendix B for any tem- Ill. AN ALTERNATIVE TREATMENT OF THE MODE-
peratureT. Let us explain briefly here how the algebra COUPLING EQUATIONS: FUNCTIONAL
works. RENORMALIZATION GROUP APPROACH
After replacing into the mode-coupling equations, one is
left with implicit equations forq, f,,, X, and y, but the de- In view of the difficulties raised by the mode-coupling

pendence on time cancels out in the limit of large times. Thi%quations, one has to search for new analytical methods to
is what makes th.e an_satz consistent, at I_east as far as tk@ and solve them. One of them is to apply a functional
dependence on time is concerned. We give computationgbnormalization group analysis to the mode-coupling equa-
details in Appendix B. In particular, in the equation for yong themselves. To our knowledge, such a method has
C"(t,t"), Dp(t1,t2) can be written as a sum of four contri- never been used in this context. For the present problem, this
butionsD{(t;,t,), i=0,1,2,3 as shown in Appendix A. The procedure enables us to have more information about the
terms involvingD ?(t,,t,) andD{)(t,,t,) are shown to be analytical form of the correlation functions. In particular, it
negligible in the limit of large times, and also if the tempera-can justify some scaling form for their analytical expres-
ture is not too large: this makes the time cancellation possjons, as soon as one finds a fixed point in the RG procedure
sible. All parameters, f,, X, andy have a dependence on that is believed to represent the small frequency, small
temperature, which is hard to find analytically. The remain-yaye-vector regime. This is motivated by the fact that we are
ing equations org, f,, X, and y are too difficult to solve  mqstly interested in the long times limit, and in the long-
numerically, since they require the introduction of cutoffs— yistance regimeg—s’ —c, along the chain

see Appendix_B—to stop the divergences in the integrals In the case of the disordered polymer, our dynamic RG
when the two time arguments become too close to each othep . jation gives rise to a fixed point. However, the fixed

[in particular, bOtré,”(t,t') andC"(t,t') have different ana-  points equations are themselves hard to solve. We also be-
lytical forms whent’ —t, which we do not know lieve that such a method could be of interest for simpler and

The two extreme caséb=0 andT= can be looked at |5rgely studied systems, such as the KPZ equation, but we
more closely in this problem, even if we have shown that theyiq 1t 100k at this case here.

above ansatz is an acceptable solution at large times for any

In this type of calculatior}30], we want to integrate out
temperatureT small enough. In the case whefe=0, the typ 30] d

equations can be simplified more. the terms involvin the fast wave-vector modes and keep only the slow modes,
9 P ' Ythe ones with small wave vectors. One should also, in prin-

(2) (3)
Dy7(ts.12) an_d Dr7(ty,t;) are actually equal to zero "’?“d ciple, do the same thing for high frequencies, to keep track
one sees easily that the above ansatz still remains valid, fq

the same reasons as the ones explained afs®eAppendix icrinlyacl)lf mz Ionvafr:iai?iggr}cr:]y ffsrﬁetﬂf cznatétz dgﬂte \t,)\,)é, e;péris;—
B). We were also able to show that a time-translational so- 9 q q y space,

lution was not acceptable, by taking some appropriate tria?escribe this part here for simplicity. In order to integrate out

functions such as exponentials or stretched exponentials. W€ fast wave-vector modes, we first switch from discrete to
give details on this point in Appendix B also. continuous Fourier variables, by replacing, by

If we study the limitT—, one is left with a single term Jd°K/(2m)® with an upper cutoff\, whereD is the dimen-

sion of the chair(in our caseP =1). The wave vectors such
that A/b<||k||<A can be integrated out in all quantities,
whereb=e? is close to 1 §l—0); then the only perturba-
tive parameter here i8l. After integration, we denote the

quantities Q for which the [|K|| integration is now only
J57°dPk/(27)P, by Q<.
The power-law ansatz used above can no longer satisfy this In order to harmonize the notations with the ones in the
condition. preceding section, we now not*(t,t’) and CX(t,t') the
However, if one assumes time-translational invarianceth Fourier component of the correlation functions, and still
and the usual fluctuation-dissipation theoredG(7)  use the notatio®,, Ry, 3, for the mode-coupling kernels.
=[—6(7)/T]3,C(7)) the mode-coupling equations are sim-  |n a more convenient way than the ones used in the pre-
p|y satisfied. In the limit of infinite temperature, one is actu-vious section, the starting mode-coup]ing equations we used

ally left with the simple Rouse model for a homopolymer can be rewritten in the form originally derived in Appendix
chain, and an exponential time relaxation. A (see alsd25)):

Such information about a glassy behavior at low tempera-
tures with power-law behavior leads naturally to think of the
existence of a critical temperatuiig that may separate the
glassy, non-FDT, nontime translational invariant regime
from a high temperature regime where the relaxation would

in the equation folC"(t,t’):

J‘ dt, DX, t)B(t' t;)=0. (16)
0

CH(t,t")=CK(t,t")

be typically exponential. Although it is not possible to deter- t v _

mine this temperature from our equations, it should be easier +f dtlf dt, GX(t,t)) Di(ty,t) GK(t' 1),
to observe such a phenomenon in simpler models of poly- 0 0

mers, or by studying numerical models of polymers. a7
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ko to, More specifically, we assumed the following scaling forms,
GH(t,t")=Gp(t,t") + Jodtl Go(t,ty) which are compatible with the mode-coupling equations:
ty =y , =k "o 1 Z 41,2
SR dt, Ry(ty,t)GK(ty,t") Ci(t,t")= I(ZMDC(tk k), (25)
ty ~
+ | Tdty Sty 1) GK(tp,t7) | 18 Bkor o )
fO 2 k( 1 2) ( 2 )} ( ) Gk(t,t ): Z+Dg(tkzit kZ), (26)
In such a way, we can write for a quant®(t; ,t,), the 1
following one-order expansion idl (Q=G,C,R,X,D): Dy(t,t")= k2a7D74zd(th’t,kZ)' (27)
QX(t1,t2) =Q (t1,t2) — 81 Qu(ty, to). (19
_ _ Ri(t,t") =k?r (tk%,t'k?), (28)
The correctiong,(t,,t,) can be computed and only in-
volve the different quantitiess, and Q<. We give more St t) =k?Zs(tk? t' kD). (29)
details on this computation in Appendix C. In particular, for
G(t,t") andC,(t,t"), we have We want now to try the ansatz of the previous section

[Egs.(13) and(14)], so we now assume more precisely that

t - t ~
gk(t,t’>=f0dthS(t,t1) foldtszm,tz)Gk(tl,t')

S 1 t’
. Ctt)= ol ¢ (30)
+f dt, Si(ty,t,)GX(t,,t")
° ~k ’ 1 t’
t , Gi(t,t")= 7+D t?gl (31
"‘fo dty Ry(ty,t5)G(ty,t")
B! D, (t,t’ —;d (t—) 32
"’J'O dtzzk(tlatz)gk(tz,t')}, (20 Kt = K2a—D—4z 1\t | (32
! t = 2 _k22 1 t,
Ck(t,t'):fodtlfo dt[ GX(t,t1) Dty ,t2) Gt to) R(t,t)= @rl t) (33
+GX(t,t) Dyt 1) BN ) , 1 [t
~ Ek(t,t')zk Z—ZSl T (39
+Gu(t,11) Dy(ty, 1) G 1) . (21) tk

The next step is to do a rescaling of all quantities and Due to the scaling nature of all quantities, the derivative
write a differential equation for the renormalization flow termsaQ"/ﬁk and &Qk/&t in the flow equations can be sim-
where the increment i$l. One has then to make scaling plified and expressed in terms Q‘k(t,t ), and we end up
assumptions, which are expected, at least at the fixed pointgith the following set:
if any. Then, if one assumes

Fleh -
——=—2(z+D)GNtt) +G (1), (35)
Qk(tt/ = q(tkzt K?), (22 dl
: . , _ aCk -
wherez is the dynamic exponent, the renormalized quantity T —2(D+2a)CK(t,t")+C(t,t"), (36
is
~ . o~ g D
QR(t,t)=b XQPR=(b~t,b~2"). (23 Tk:—2(2a—D—4z)Dk(t,t’)+Dk(t,t’), (37)
By expanding this last expression to first order dh one
i i R
finally ends up with 7k=4sz(t,t’)+Rk(t,t’), (38)
9Q" gQ* _aQ* _ aQ"
TI—XQ (t,t')+k— g —zt——zt’—+Qk(tt) >
(24) T=422k(t,t )+8k(t,t ) (39)
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The fixed points are obtained by setting thderivative to  tant physical properties of the dynamics of(disordered
0, and denoting b* the fixed-point quantities, and replac- polymer in a collapsed state. In particular, if glassiness was
ing in the expressions fag,(t,t’) andC(t,t"), we obtain  not present in such a system, there would be a characteristic
the self-consistent equations at the fixed point: time 7 after which one would finally have time-translational
invariance, independently of the chosen initial condition
particular, even in the case of the initial conditions we chose
herg. However, we find aging and out-of-equilibrium prop-
t ty - erties at all time scales; this suggests that our approach still
=(D—Z)f dthg(t,tl)[f dt, RY (ty,t) GR* (1) captures this glassy dynamical effect, even in the particular
0 0 case we considered.

(z+D)G** (t,t")

t, _ This evidence for glassy behavior was already obtained in
+f dt, E:(tl,tz)Gkv*(tz,t’)}, (40 a similar study of the dynamics of heteropolymers by Franz
0 et al. [12]. Starting from the same Hamiltonian as ours, the
dynamics was studied using a supersymmetric formulation of

e ern t t' the Martin-Siggia-Rose functional, which was shown by
(2a+D)C™ (t,t")=(2a+D—22) fodtlfo dt, Kurchan[31] to be useful to study the dynamics of systems
for which the solution of the statics is known. Their final

Xékv*(t,tl)D:(tl,tz)ék'*(t’,tz). (42) result is very similar to ourgand they actually start from

random initial conditiong and the dynamical equations for

We checked that the power-law ansatz used in the firsf1€ correlation and response functions are of the mode-
section is still a solution for these equations of fixed point;couPling type[Egs.(11) and(12)]. Using the results on dy-
the procedure of replacing the ansatz in the expressions R@mics of manifolds in a random potentj&2], one is then
exactly the same as the one described in Appendix B. ThigbPle to predict the aging regime, and a power-law decay of
can then justify its use in the mode-coupling equatick®y ~ correlation functions, though the precise analytical forms
and(12) from which we started our analysis, and which rep-could not be found. These results, obtained with a method

resent the real-space quantities of interest; the scaling foritlying on the structure of the statics solution of the problem
of the ansatz is also justified. If we then plug at the fixed[S], are consistent with ours and the direct dynamib&CA)

point the generalized fluctuation-dissipation theorem@PpProach. o _ o
GX(t,t') =x(alat")TK(t,t'), we obtain the following rela- Calculations similar to the one described above in this

tion between exponentsi=z. Further information on the paper can be made by slightly changing the starting Lange-

exponentsy andz could be obtained by solving numerically vin equation. We replaced the disordered interachi¢s,s’)

) : SO between monomers by a constant attractive interaction coef-
gf)suep\),{/iigquatlons like Eq#40) and(41); this will be done ficient v, therefore restricting our study to homopolymers.

Remarkably enough, we found that the power-law ansatz still
holds at low temperature. The corresponding formulas for
IV. DISCUSSION AND CONCLUSION the MCA equations are given at the end of Appendix A. The
structure of the equations is completely analogous to the dis-
The analysis of the mode-coupling equations using renorerdered case, and we showed that the power-law ansatz is an
malization group ideas enabled us to write the dynamic coracceptable solution by following the lines of the calculations
relation functions of a disordered polymer in terms of scalingof Appendix B. Even in the absence of disorder, the mode-
functions. Unfortunately, at this point, it does not give muchcoupling equations seem to induce some apparent disorder in
insight into the exact asymptotic time and wave-vector defrustrated systemésuch as polymer chains in the collapsed
pendence, at large times and large wavelengths. We belieyghase in this cageand lead to nontrivial glassy behavior. In
however that this method could be very convenient for morehe MCA approach, it appears that one can capture the frus-
simple examples of stochastic equations, that are treated ugation character of a collapsed polymeric chain that stems
ing mode-coupling techniques. from the competition between the attractive interaction be-
The main result of the mode-coupling approach is theween monomers and the harmonic potential due to the elas-
evidence of the out-of-equilibrium character of the dynamicsicity of the chain[the classical mode coupling theof20]
of heteropolymers, in the thermodynamic limit. The depenfor glasses also captures frustration in such simple realiza-
dence of the dynamic correlation functions on two times—tions as binary mixtures of Lennard-Jon&d) particled.
the smaller one being the waiting time—implying no time-  This similarity of behavior between disordered and non-
translational invariance and a generalized fluctuationdisordered polymers is not very surprising when one remem-
dissipation theorem, is required at low temperatures; moreers that mode-coupling equations have very similar struc-
precisely, a power-law dependence on two times is a solutiotures in the disordered and nondisordered version of a given
of our set of equations. This contains the aging phenomenomodel [25]. More precisely, it has been previously shown
similar to the one observed in spin-glasses and other types tiat given a nondisordered but frustrated or chaotic model,
disordered systems. We expect the aging regime found hemne can find a disordered model of the same class whose
to be present as a long transient in finite polymers. mode-coupling equations are actually exact, and coincide
Although we used a very special case of initial conditionswith the approximate mode-coupling equations of the non-
in our study, we think that our results still capture the impor-disordered model[This is, however, not exactly the situation
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that occurs here, since the mode-coupling closure is only aa careful reading of the manuscript. E.P. was supported dur-
approximation scheme for our heteropolymer madéhis  ing this work by NIH Grant No. GM 52126.

emphasizes the importance of such studies for real glasses,

which are not characterized by the presence of disorder. In

particular, our analysis may be helpful to understand the dy- APPENDIX A

namics of polymeric glasses, or melts, that also exhibit aging

[8] and vitreous dynamicgl9], qualitatively very similar to In this Appendix, we give the full expressions for the

the physics of binary Lennard-Jones fluid mixtufas]. mode-coupling equations obtained in Sec. Il, as well as some
It is interesting to note that a great similarity has beenintermediate results.

observed in the dynamics of supercooled liquidsodeled Starting from Eq(10), one performs an expansion to sec-

by binary mixtures LJ particlgsand of polymer melts, ond order in\, which leads to an approximate expression for
whereas a few differences are noticeable due to the conne ; P -
tivity effect of the polymeric systerfiLl9]. It has been shown Palt). This expression is the following:
that the correlation functions and in particular the dynamic
structure factor for polymer melts can be well described by o ft
the MCT for liquids. However, the mean-square displace- %" (t)=4" O(t)__f dt’GH(t,t )W ((t)
ment shows a subdiffusive behavior compared to the case of ' N Jo ’
nonconnected LJ particles, due to the connectivity of the N2 ft N
chains. This difference occurs in theregime, at large times, + _j dt' Gt t/)f ds
that reflects the rearrangements of the chain at scales larger N o 0
that the size of a particle’s cage, whereas theegime, at
small times, corresponds to local movements inside a cage, N o s , dq
which are the same in the presence or not of connectivity. On x Jo ds'e™rB(s,s )J (Zw)dlq“
the ground of these microscopic mechanisms, it does not
seem surprising either, that a disordered polymer melt or a ) i s .
homogeneous melt may have the same kind of dynamics. ><exp|§a: qamE#:O (e om*—e™lom) (")

To summarize, our model provides a tentative theoretical
framework which allows to exhibit slow dynamics and aging , s oS’
in dense phases of homogeneous or disordered polymers. A XEB: 'qﬂgfo (e —e @)
further step in this study would be to find an efficient nu-
merical algorithm for the resolution of the mode-coupling
equations or of some simplified form of these mode-coupling
equations. This would provide the full solutions for the cor-
relation functions, as well as for the mean-square displace-
ment, as functions of time, and allow for a direct comparisothere
with the numerical results of Baschnaggtlal. [19].

An important issue that also needs to be clarified is in
which way the fluctuation-dissipation theorem is violated at
long times. It has been shown very receri®] that in the WO (t') = deSdeSreiwnsB(s S,)f
case of systems with short range interactions, the measure- *0 0 0 '
ment of the violation of the dissipation-fluctuation ratio is
directly related to the pattern of the replica symmetry break- ; —iomS_ a—ioms'\7m [+
ing (“one-step rsb” or “full rsb™). The statics of the het- xexplg qango (e m=e ) fudl).
eropolymer model studied here were reported[5h and
showed a one-step replica symmetry breaking, so the

fluctuation-dissipation should, according [84], be of the Starting from this expression we calculat&f(t,t') and
form given by Eq.(15). In addition, concerning the case of ~

homopolymers, it would be of great interest to use the firstcn(t’t,)’ performlng bath averages on the_randqm noise and

principle computations described[iB5] and be able to draw on the dlsorger. The result can be written |n.tern.1$ of

a link between the equilibrium and the dynamical propertiesS6(t,t') and Ci(t,t") only; but the MCA approximation

in the glass phase. consists in replacing these quantities by the full unknown
quantities GP(t,t’) and CP(t,t’), resulting in a set of
coupled Dyson equations:

t’ ~
X f dt"Gh(t’ ,t")Wh (1),
0

dd

—(zw)dlq“
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~ ~ t ~
Gn(t,t’)=Gg(t,t’)+j dt,Go(t,ty)

0

t ~
X JO dt2 Rn(tl atz)Gn(tl ,t')

+fotldtZEn(tl,tz)én(tz,t’)}.

The mode-coupling equations can be rewritten as integro-
differential equations, performing on the left- and right-hand

sides of the previous equations a convolution v@th * (see

also [25]). The resulting set of equations is the one intro-

duced in Sec. Il

a n n
at”’ (t,t)=a8(t—t") fdtl (6Bt
t ~
+£,2n(t1t1)6n(tlrt,)v
a n n
m—l—w C(tt )—Jdtl R,(t,t;)C(t,t")

+Jt dt; D, (t,t)G"(t,ty)
0
t ~
+J dtlzn(trtl)cn(tlvt’)'
0

The term f{,dt1 R,(t,t;) plays the role of a mass and is
given by the following expression:

Rn(tlltZ): f dslf dSl(l elwn(sl Sl))

N3 (2m)

X > (1—eep1730)BP(ty,t,)
p#0

[A(S1,S7;t1,t2) 1727 923X(sy,51;t1) Y(S1,575t1,t0).

PHYSICAL REVIEW E63 041501

Finally, D,(t;,t;) can be seen as a ‘“renormalized” noise
correlator, whose expression is reported here:

Dn(ty,t2) =DP(ty,t2) + Dty ,t2) + Dty ,t,)
+D§13)(t1,t2)-

Each term can be computed separately:

0) 2T
Dy(ty,ty)= N o(t;—ty),

B 1

N2 (2 )d

D{M(ty,t) = —- f 51f ds;Y(sy,81;t1,t)

X[A(sy,S15ty,t0)] 192

2B32T 1
NZ N (2 )d

X2

p#0

(2)(t11 2)_ f dS]_J' dsl(l elwn(sl Sl))

dts GP(t,,t5)(1—e“n(s1™ Sl))
X[A(sy,S);ty,tp)] 2792

—3X(s1,81:t3) Y(s1,87;12,t3)

t ~
X f 2dt4 5(t1_t4)Gn(t2 |t4)
0

+[X(51,Si,t2)X(Sl,Si,t3)

+2Y%(s1,51;t,t3) ]
t3 ~
« [ Cd st 0s )|,
0
D(t1,t) =DP* (t5,1y).
Finally, we used the following notations:

X(s1,85ty)= >, e teme— efiwmsﬂzém(tl 1),
MZ0

The quantity> ,(t;,t,) can be seen as the self-energy asso-

ciated with the corresponding Dyson equations:

283
Sty tp)=

T o )df dslf ds](1—e“n(s175)

X X (1—e i s0))BP(ty 1)

P70
X[A(S1,51;t1,t2) 127 ¥2[X(sy,805t)

XX(S1,81;t2) +2Y%(s1,575ty,t0) ]

Y(s1,81;5t1,t) = > |eiomsi— e_iwmsqzém(tl 1),
m#0

A(sy,87;ty,t2) =X(s1,51;t1)X(S1,57;t2)
—Y2(sy,575t1,10).

Let us now explain briefly what happens in the nondisor-
dered case, where the random variaBlgs,s') is replaced
by a constant. The corresponding MCA equations have
exactly the same structure as in the disordered ¢BEss.
(11) and(12)]. The only differences are in the detailed ex
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pressions of the kernels, which are more complicated—in the 2,2
disordered case, some simplifications could occur due to theR@(t, ,t,)=— — f dslf ds;(1—e'@n(sims)
averaging over disorder, but this is not the case any more if N3 (2m)¢
there is no disorder.
The “mass” kernel is X (e 1@ps1— e 10ps1) GP(ty,1,)
p#0
—Rr@ (2) N N
Rn(tl!t2)_Rn (tlat2)+Rn (tlth)a X fo dszeiwpszJ'O dSé

X[W(Sy,S7:S7,S5:t1,t5)] 2792

2U N N . ’
R<nl>(tl,t2)=—25(tl,t2)f dslf ds)(1—e'n(s1750)
N 0 0 X 3X(81,81;11)Z(81,51;82,87;t1,t2).

X[X(sy,81;t2) ] 179, The “self-energy” 3, (t1,t,) is given by

" ! fwosy N . N _ o
(277)"]0 ds, e~ '“nS1 dsl;;o (e fwpsy e 9% GP(t,,15) fo dszelwpszjo dSé(e""nSZ—e'wnsz)

X[W(Sl,51?52,Séitl,tz)]izidlz[x(sl751;tl)x(527sé;tz)"‘222(51,5152,35;'[112)]-

v
Sh(ty,ty)= N

Finally, the “renormalized” noise correlatdd(t,,t,) has the following expression:

5
Di(ty tz)= 2 DRty o).

Each term can be computed separately:

) 2T
Dy (t1,tp)= W ot —ty),

v 2T
p{t >(t1,t2)— G (t,,t 1)f dsf ds’ (1—e'“ns' =9 [X(s,s' t,)] 1792

Di(ty t 2)— N? (27 )dj dslf dslf dSZJ' dsy el “n17%7(s1,50;5,,853t1,t2) [W(S1,57;S2,855t1,t) 114,
(4)(t )= 20221 1 de —i Slde /de de '
o) = s e 'en S
1:t2 NZ N (2md)o el P P

. . ’ t2 ~
X >, (el@nls2s)— elwp(szisl))J' dtaGP(to,t3)[W(S;,S1;S,S5;ty,tp)] 2742
pZ0 0

. . ’ t2 ~
—3X(s1,51:t2)Z(S1,51:52,S73t2,t3) (€' n°1— elwnsl)f dts 8(t;—t4)G"(t2,t4)
0

) . , t ~
+[X(sl,si;tZ)X(sl,si;t3)+222(sl,si;sz,sé;tz,t3)](e'°’ﬂ52—e""n32)f 3dt4 8(t;—14)G"(t3,ty) |,
0

DP(ty,t) =D{* (t,,ty),
D{P(ty,t) =D{* (t,,y).
Finally, we used the following notations:
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, s N Finally, given the cutoffsv and 1- €, all terms in the equa-
. _ —lw ol ~
X(Sl’sl'tl)_ngo |7 omi—e e FCT(ty ), tion for G"(t,t’') are proportional to each other, and hence
the dependence on time cancels out.
Z(51,51:S2,Sp;tq,t) = 2 (e‘i“’msl—e““’msi)
m=0 2. Equation for C,(t,t") [see Eq.(12)]

—iwrSy_ a—iwmSiyAm
X (e tom2—eem2) C(1y, ), (i) The first new term that has to be computed is in fact

W(s;,S1;52,55:t1,t2) =X(S1,51:t1) X(S,,85;t2) proportional to(~3”(t,t’) :

—Z%(81,51:55,85:t1,1).

ftt,zn(t,tl)é“(tl.tw

Let us stress here that, thanks to the technical similarities

between the MCA equations for the disordered and non- 2B2 1 (N 'f

; i i i _--0 —iwpsy A Tn -1-d
disordered case, the analytical computations developed in =— f ds(1—e on9) [X(s)]
Appendix B also apply naturally to the homopolymeric sys- NZ (2m)%Jo 2
tem.

APPENDIX B w t

In this appendix, we show how the ansatz proposed by
Eqs.('13) and (1_4) can b(_e a swtable solution for the mode-  (ji) The remaining terms coming from th2,(t,t,) con-
coupling equations obtained in Sec. II. tribution can be simplified. First, when<t, it is easy to see

We give the expressions of the different terms introducedy, 5t the ones involving)go)(t,tl) and Dﬁf)(t,tl) are equally

1—¢€ t’'\ 7
xf du ul(l—u27)2d’2[1+2u27]( ) .

in Appendix A, after performing adequate change of vari-
ables, after the power-law ansatz has been plugged into these
terms. Whenever required, we introduced lower and uppect
cut-offs, assuming that in the extreme regimes of time<c"(t,t"),
(short times ort’—t, for which we do not have explicit

(i) The D{M(t,t;) contribution is again proportional to

analytical form$ the integrals are actually convergent, and ¢ L _
that the time scaling we find is not modified by these contri- f dt;D(t,t)G(t' )
butions. In all equations we neglect the derivative terms, 0
which is justified in the limitt’ <t. 4BS 1 de (] 1 (t’)V
~ =— S S —| =
1. Equation for G,(t,t") [see Eq.(11)] N (2m)%J)o Rl 2y\t
(i) The first term in front of the propagator in the right-
hand side of the equation is comparable to a mass: (iv) Finally, the last term has a different time dependence.
ftdtR(tt) 285 1
) = tl G 4
o LNTTON2 (20 fo dt; DP(t,t) Gt ty)
N - 3q’
x| Castr—erte Thix(e)
0 2q 2B2T 1 (N g
=— f ds(1—e™"“n®) —(q'f) [ X(s)] "¢
Jl_f —1+2 2y —2-di2 N2 (2m)4Jo q
X duu Y(1-u“?) .
0 1 1-e
_ 2y—2 2y—1fq _ ,,2y1—2-d/2
This factor is independent of time, up to the cutoff &. x 3fwdu u fo dv v [1=v™]
(ii) Concerning the second term, it is in fact proportional
~n . 1 1-€
to G (t,t ) +f du u2'y—2f dvv—l[l_UZy]—Z—dIZ
t w w
J'rzn(t!tl)Gn(tlit,) 1 tr y—1
. 1 _)
tit '
2B5 1 (N . '2f
=— df ds(1—e 1) " [X(5)] 1
N= (2m)"Jo q Because of its scaling behaviortiandt’, this term is in fact
1-e . o 42 a subdominant term compared @'(t,t') in the limit t
X L/D duu *(1-u?) —oo andt’ — o, t'<t. We can neglect it in the limit of large
v . times, and also provided that the temperatlires not too
C[1+ U2 7 large. Then all terms in the equation f6(t,t') have the
t\t ' same time dependence, which can then be cancelled.
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As was already mentioned in the main text, we tried someanonphysical situation as TTI is all the more justified as the
other trial functions than the power-law ansatz. In particulartime difference is small. So in both cases, the TTI assump-
we tried time-translational invaria TI) exponential and tion gives contradictory results, which shows that this kind
stretched exponential solutions, following the same algebraf hypothesis does not hold here.
as the one described just above. These functions do not
work, as they do not lead to a time cancellation of the mode- APPENDIX C
coupling equations and rather lead to physical contradictions.

Let us show briefly why these solutions are not accept- We presentin this appendix a more complete set of results
able. For simplicity we use here stretched or pure exponer@nd intermediate computations for the RG approach to the
tials (as they would be the most expected solutions in thénode-coupling equations presented in Sec. lll. We start from

case of TT). Namely, we take, fory<1, Egs.(17) and(18) that were originally derived at the begin-
ning of Appendix A.
C(t,t)=q,e fnt-t)7, In the expressions fdD,,Ry,2, as we take the continu-

ous Fourier variable, integrations of the fofi§) d®p/(2)°
_ 9 . Ny can be found, wheré\ is an upper cutoff. As we want to
G”(t,t’)=X;C”(t,t’):XQn)’(t—t')y_le_ (=17, integrate out large wave-vector modes, we write

. . . A dPp Ab dPp

We assume these solutions to be valid for large times, and f A p):f A(p)

especially if the time difference—t’ is small. Let us con- o (2m)P (2m)P

sider here the integro-differential equation Gf(t,t’). In 5

this equation, the first term on the right-hand side, +fA d”p A(D)

J5dt; Ry(t,t,)G"(t,t") may break TTI. Using the TTI an- Afb(277)P

satz, we actually find that the time dependence of 5

S5 dty Ry(t,t,) is the following: :ij d”p
o (2m)P°

A(p)+ASIA(A)

t t
~ _ —y(1+d/2)
fodth“(t’tl) fodtl(t t) ’ in the limit 51— 0, with b=e?.

. _ We noteQ*~ the quantityQ obtained after integration of
If 1_7(}+g/+22,2>)0' this integral is convergent, and be- he  fast modes, where only integrals of the form
AT : > , / '

haves liket , Which goes to~|2fln|t,y at. large times. fé/bde/(Zﬂ_)D remain. This leads to the one-order expan-
Consequently, the terift, dt; Ry(t,ta) G"(t,t') violates TTL. sjon in 6l Eq. (19) of the quantitiesDy, Ry, 3. As an ex-

If 1—(1+d/2)<0, the integral is divergent fan—t,  ample, we give here the expression To(ty ,t,), but do not
and one can see eaSlIy that one needs a different behavior ﬁfention the other ones as the formulas are quite Comp”_
G"(t,t,) in this region of time, which violates TTI. This is a cated:

2B3 3A
N3 (27)d

N N o,
Rk(tlatZ): fo dslfo dsi(l_e'k(sl_sl))[A(Sl,Si;tl,tz)]_z_d/z

X1 (1- eiA(Sl_si))éA(tl 2)X(S1,815t) Y(Sy,815ty 1) +2{1— cof A(s;—s]) [}CA(ty,ty)

A ) o ~
Xf dp(1—ePC1mS))GP(ty,t,)Y(Sy,81;t1,t0) +2{1— cog A(s;—S) 1} CA(ty,t5)
0

d){l— co§ A(s;—sy) ]}

A
X | dp(1—ePE1s))GP(ty,t,)X(sy,8) it )—2(2+—
fo p( (1 2 ( teL 2 A(Slasi;tlvtz)

A . ! ~ ~

X f dp(1—ePE1S))GP(ty,t5) X(Sy,S1;t1) Y(S1,S15t1,to)[X(S1,S1;t1) C (1, t0)
0

+X(81,51;t)CM(ty,ty) —2Y (51,87 5t1,t) CA (1, ytz)]l ,

with

041501-11



E. PITARD AND E. I. SHAKHNOVICH PHYSICAL REVIEW E63 041501
' A ' =
X(s1,54:t)=2 | dp{1- cogp(s,~spIT(t ),

A ~
Y(Sl,Si;tl,tz)IZJO dp{1- cogp(s;—sy) I}CP(ty,t5).

Then we used the expansions éh Eq. (19) of Ry, ,Dy to find the ones foG* and C*. This is done by writing the
following simple algebra foG* and Ck:

_ _ t _ t _
Rt =BH(Lt) + fodtleéu,tl){ fo LIRS (t 1) — O Ri(tr ) B (t1.t) — 31 Gulta )]
t -
"'fo dt2[2k<(t1,t2)—5|Sk(t1,t2)][Gk<(t2,t’)—5ng(t2,t’)]}
~ t t _ t B
:Gk<(t,t’)—5lf dtleé(t,tl)U dtsz(tl,tz)Gk(tl,t’Hf dtp Si(ty,t)GN(t,t")
0 0 0

t t
+f “dt, Rk(tl,tz)gk(tl,t%f ldtzzk(tl,tzwk(tz,t’)},

0 0

~ ~ t ! ~ ~
CK(t,t")=CH(t,t)+ fodtl fot dto[ GF=(t,t1) = 81 Gy(t,ty) I[D (ty,ty) = 81 Dy(ty,to) LGK(t' ,ty) — 81 Gi(t' t2)]

~ t 4 ~ ~ ~
=Ck(t,t') - ol fodtlf; dto[ GX(t,t1) Di(t1,t2) Ge(t' o) + GX(t,t1) Dy(t1, 1) GH(t' t,)

+G(4,t) Dy(ty, 1) GH(L,t0)],

which gives the following expressions fg(t,t’) andC,(t,t") [Egs.(20) and (21)]:

t - tl - tl - tl
Gu(t,t')= fodtleéa,tl) fo dit, Ri(ty,t) GX(ty 1)) + fo dt, Si(ty,t) GX(t, t) + fo dt; Re(ts,t2) Gi(ty,t')

t
+foldtzEk(tlatz)gk(tzat')}:

t t’ ~ ~ ~ ~
Ck(t,t'):fodtlfo dtol GX(t,t) Dy(ty, 1) Gil(t' t2) + GX(t,ty) Di(ty,t2) GH(t' t2) + Gi(t,11) Di(t1, 1) G/ ty) .
We used then an expected scaling form for all functions, as is illustrated in the main text bi2Bgand (25)—(29).
The rescaling step used in the RG procedure is represented b{28gand can be detailed in the following way for
Q(t.t):
QR(t,t")=b ¥Q®R=(b~%,b ")

ol

(9~ k< t,t, (9"' k< t,t/
Q) R

k< ’
Q= (t,t")+ dlk oK p

=(1-46lx)
at

a@“(t,t')]
zt’ ;

=Q S (t,t)+ 8l —xQ=(t,t")+k

GO (t,t)  a0K<(t,t)) aék<(t,t’)1
—zt —zt’
ok at ot

=QX(t,t")+ 81| Qu(t,t") — xOXt,t) +k

JQKt,t)  aQNLt) aQMtt)
kAT TR )

so that taking the limitsl —0, one ends up with the flow equation fQX(t,t'):
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~ , K ’
QML) zt'aQ;:,’t Lo,

JQN(t,t')  aQK(t,t")
E —zt -

_ UAk ’
XQH(t,t")+k oK p

Using now the fact that for any function with a scaling form of the ty}g(t,t’) = (1/kP)f(t'/t), one has

XXX
ok P TRt T RN

and forX,(t,t")=(1/kP)(11)f(t'/t), one has

XXX y
AT S (B—2)X,

we can simplify the last equation and finally find E¢35)—(39).
The flow equation$35)—(39) lead to the following fixed points:

2(z+D)GR* (1,t)=G(t,t"),
2(2a+D)CR* (t,t")=C(t,t"),
2(2a—D—4z)DX* (1,t") =Dy (t,t"),
AZRE* (1,t) = —Ry(t,t'),
AZ3K* (1,1)=— S (t,t').

We replaced al, quantities by these values in Eq20) and(21), and found the final mode-coupling equations at the fixed
point:

~ t _ t - t _
(z+D)Gk'*(t,t’)=(D—z)f dtleg(t,tl)U lolt2 R;(tl,tz)ekv*(tl,t'wf ldtz2*.:(tl,tz)ekv*(tz,t') ,
0 0 0

~ t ! ~ ~
(2a+D)Ck*(t,t')=(2a+D—22) Jooltlfot dt, GR* (1,t) Dy (ty,1,) GR* (t/,t,).

These correspond to Eqgl0) and (41) which are discussed in the main text.
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